多元アクセス方式の研究 Research on Multiple Access Schemes

Fixed Assignment Based Window Access

Power level Division Multiple Access

Orthogonal Frequency Division Duplex

Fixed Assignment based Window Acces

Random Access<-small Window Size large -> TDMA

Fixed Assignment based Window Access with Capt

Simulation Result – Window Size

window size did not change along with the traffic increase

Deep Leaning Based FAWAC-Q

Power Level Division Multiple Access PDMA

Assign Power Level and Slot for each station.

	•	- fran	ne 0 -	•	• frame 1•				•	- frar	ne 2 -	•	frame 3			
slot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	P1	P ₂	P3	P4	P13	Pi4	P15	P16	P9	P ₁₀	P11	P12	P5	P_6	P7	P ₈
2	P ₅	P ₆	P7	P_8	P1	P_2	P_3	P4	P13	P14	P_{15}	Pi6	P_9	P10	P11	P12
S S	P9	Pi0	P11	P12	P5	P ₆	P7	P ₈	P1	P_2	P3	P4	P13	Pi4	Pis	Pi6
4	P ₁₃	P14	P15	Pi6	P9	P10	P11	P12	P ₅	P ₆	P7	P ₈	P1	P ₂	P_3	P ₄

16 stations, 4 power levels

Throughput-Delay Characteristics of PDMA

NOMA方式 NOMA

Non Orthogonal Multiple Access (NOMA)

- ➢NOMA technique utilizes power domain to break orthogonality of Orthogonal Multiple access (OMA) system which utilizes a time of frequency domain.
- ➢ In power domain, different power level are assign to different users to extract the message signal from the composite signal.
- SIC apply at the receiver side to separate the NOMA users and if small power level difference PIC may be a better option.

NOMA Successive Interference Cancellation(SIC) Receiver

- NOMA uses interference cancellation scheme & is free from collision unlike in OMA.
- ➢ For Near-UE to decode Near-UE bits, Far-UE bits need to be know and decode also.
- Regenerate the interference signal caused by far-UE and cancel it from the received signal using SIC
- ➢ Far-UE decodes its own signal, and treats Near-UE as noise.

SIC P3 d SIC P2 d SIC P1 d Fig: SIC pr

Parallel interference Cancelation (PIC)

PIC detect and cancel all the interference
PoweSimultaneously. So, by using PIC delay related to SIC Can be minimize.

Power Allocation Strategy:

	4	p13	p14	p15	p16	p9	p10	p11	p12	р5	p6	р7	р8	p1	p2	р3	p4
power	3	p9	p10	p11	p12	р5	р6	р7	p8	p1	p2	р3	р4	p13	p14	p15	p16
level	2	p5	p6	p7	p8	p1	p2	p3	p4	p13	p14	p15	p16	p9	p10	p11	p12
	1	p1	p2	p3	p4	p13	p14	p15	p16	p9	p10	p11	p12	р5	p6	р7	p8
slot		1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16
	frame 0					frame 1				frai	me	2		frame 3			

TABLE: Dynamic Power Allocation

Table above is for Dynamic Power Allocation(DPA). A total 16 users with 16 different power and different power are allocated in different power level frame wisely.