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Palm Typing, Writing Scheme

&

Palm Typing ‘ g

Using the palm of the hand as a keyboard or N
Writing letters instead of notebooks Palm Writing




Non-contact Blood Pressure Acquisition Using Wireless
Signals

* Non-invasive blood pressure measurement with optical sensors

 Non-contact blood pressure measurement by image
—The effects of light outdoors, skin color, etc. are not taken into account.

* Realization of blood pressure measurement using radio waves

—Non-contact measurement

Not affected by light and skin
Measurements can be taken with a smartphone




Experiment setup for wrist and chest

* Collect 10 data per subject (5 resting data, 5 post-exercise data)

+ Reflect the microwave signals to right wrist and left chest

* Measure blood pressure on left arm as the reference value

+ The reflex onset time is when the cuff pressure begins to
decrease.

+ The aluminum plate was grounded by an earth wire

+ The NA was calibrated before measurement.
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Estimated pulse and systolic blood pressure

Mean Absolute Percentage Error: 5.2[%] Root Mean Square Error : 3.2[mmHg]
Root Mean Square Error: 3.7[bpm] Mean Absolute Error : 2.4[mmHg]
Mean Absolute Error: 4.8[bpm] SRIEZREL . 0.89
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Data is sparse and there are no data for people with high blood pressure (people of different ages) =>
Need for collection in the future.
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Non Contact Blood Glucose Level Measurement

Blood glucose levels are very important in the
prevention and treatment of diabetes.

Research is to establish a highly accurate
method of measuring blood glucose levels by
learning the correlation between detection
using light to establish a highly accurate
method of measuring blood glucose levels.
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Background (3)

» These measurement methods not only bring pain to the patients but
also put users at infection risks due to skin-cuts.

Fig. Invasive glucometer available in market



EXperi ment---confirm optimal wavelength

Spectroscopy result of the index finger on the left hand
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Fig. Mid-infrared spectrum of male subject (a) and female subject (b)



Step 2: Data Preprocess

Feature Extraction and Scaling
Feature Selection _
Dimensionality Reduction Infrared signal
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Preprocessing Learning
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Before Lunch: Data measurement and collection
l glucose level rise
After Lunch: Data measurement and collection

Data Collection

Model Selection
Cross-Validation
Hyperparameter Optimization

Research scheme
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Proposed evaluation method

Glarke's Ermor Grid Analysis

» The widely popular and comparison tool
for clinical accuracy of glucose-related
measurements is the error grid analysis.
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» Region A are clinically correct decisions.

« Region B are clinically uncritical
decisions.

* Whereas values in C and D are potentially

dangerous. In both zones the blood glucose

values lead to over-corrections.

Region E are clinically significant errors.
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Fig. Clarke’s Error Grid Analysis.!!]

[1] Researchgate, https://www.researchgate.net/figure/Modified-Clarke-error-grid-classification-zones_figl 305391007



Low price
&
Portable

)

Aluminum Case

\Casing made by 3D
printer
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Self-made Device




Major sampling techniques in FTIR
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Most infrared radiation is absorbed in the

upper layer of skin, the epidermis.
The Skin

Hair

Sebaceous Gland

‘ refractive
_Sensory Nerve Ending indeX

Fat, Collagen, Fibroblasts

The Structure of skin.

{ Attenuated Total Reflection (ATRN
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From Anatomy of Skin by Stanford Medicine Children’s Health.
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Hair Total Internal Reflection

SEbhaceous Gland

The Skin

Sensory Merve Ending

- Epidermis ‘ u
R | Nerve 0.2mm

— | Dermis

- - Subcutaneous Tissue

Capillaries

 High correlation
* Time lag of 5-10min



Prediction Model

« Partial least squares regression
 Support Vector Regression

e Random Forest

 Adaboost

« Artificial neural network

« Xgboost

« Decision Tree Regression



Predicted Concentration [mg/dl]
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Accuracy (2/2)
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Performance

Table. Performance comparison of different prediction models (Target on finger)
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R square
Random Forest 0.982
PLSR 0.320
SVR 0.976
Adaboost 0.984
Decision Tree 0.945
XGBoost 0.974
ANN 0.716

Reflectance

RMSE

4.454

27.124

4.305

4.151

7.691

5.281

36.367

MAE

3.425

22.250

3.055

3.072

5.091

4.355

R square

0.962

0.199

0.982

0.975

0.892

0.990

0.825

Transmittance

RMSE

6.439

29.428

3.750

5.220

10.830

3.300

16.732

r
MAE

3.780

24.128

2.540

3.485

6.737

2.713



Research topic

Disease diagnosis from speech
» getting audio from smart devices (ex. phone, watch, speaker)
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Sign Language Recognition Using ML

Sign language
data acquisition

[ Pre-processing ]

R iti
and learning [ ecosnion ]

0 Sensor g'OVGS Flex sensors embedded inside
= Bending sensor: each finger mesp Detect finger band

= Motion sensor : back of hand m=s Detect hand movement

= Pressure sensor : Wrist ™= Detects pressure changes Lt

around the wrist due to muscle and tendon movement

Pressure sensor Motion
s T OELR) -

Bending senii
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Proposed scheme (4/9)

Raw data collection

% Arduino

Micro

Data processing

Making a data set

Feature extraction

Training

Fig.3 Proposed system

L
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Real Time recognition

Real time recognition
System
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Accuracy Algorithm
(%) SVM KNN DT RF
ENS 97.00 10000 8000  100.00
LIE“;E 100.00  100.00  100.00  100.00
%Tf 100.00  100.00 08.00  100.00
L{TE 99.00 99.00 99.00  99.00
Average 99.00 99.75 9425  99.75

Accuracy
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